8 research outputs found

    Predictive Models For Falls-Risk Assessment in Older People, Using Markerless Motion Capture

    Get PDF
    Falling in old age contributes to considerable misery for many people. Currently, there is a lack of practical, low cost and objective methods for identifying those at risk of falls. This thesis aims to address this need. The majority of the literature related to falls risk and balance impairment uses force plates to quantify postural sway. The use of such devices in a clinical setting is rare, mainly due to cost. However, some force-plate-based commercial products have been created, e.g. the Balance Master. To align the research in this thesis to both the literature and existing methods of assessing postural sway, a method is proposed which can generate sway metrics from the output of a low-cost markerless motion capture device (Kinect V2). Good agreement was found between the proposed method and the output of the Balance Master. A key reason for the lack of research into falls-risk using markerless motion capture, is the lack of an appropriate dataset. To address this issue, a dataset of clinical movements, recorded using markerless motion capture, was created. Named KINECAL, It contains the recordings of 90 participants, labelled by age and falls-risk. The data provided includes depth images, 3D joint positions, sway metrics and socioeconomic and health meta data. Many studies have noted that postural sway increases with age and conflate age-related changes with falls risk. However, if one examines sub-populations of older people, such as master athletes, It is clear that this is not necessarily true. The structure of KINECAL allows for the examination of age-related factors and falls-risk factors simultaneously. In addition, it includes labels of falls history, clinical impairment and comprehensive metadata. KINECAL was used to identify sway metrics most closely associated with falls risk, as distinct from the ageing process. Using the identified metrics, a model was developed that can identify those who would be classified as impaired by a range of clinical tests. Finally, a model is proposed, which can predict fallers by placing individuals on a scale of physical impairment. An autoencoder was used to model, healthy adult sit-to-stand movements. Using an anomaly detection approach, an individuals level of impairment can be plotted relative to this healthy standard. Using this model, the existence of two older populations (one with a high falls risk and one with a low falls risk) is demonstrated

    A new process to measure postural sway using a Kinect depth camera during a Sensory Organisation Test

    Get PDF
    Posturography provides quantitative, objective measurements of human balance and postural control for research and clinical use. However, it usually requires access to specialist equipment to measure ground reaction forces, which are not widely available in practice, due to their size or cost. In this study, we propose an alternative approach to posturography. It uses the skeletal output of an inexpensive Kinect depth camera to localise the Centre of Mass (CoM) of an upright individual. We demonstrate a pipeline which is able to measure postural sway directly from CoM trajectories, obtained from tracking the relative position of three key joints. In addition, we present the results of a pilot study that compares this method of measuring postural sway to the output of a NeuroCom SMART Balance Master. 15 healthy individuals (age: 42.3 ± 20.4 yrs, height: 172 ± 11 cm, weight: 75.1 ± 14.2 kg, male = 11), completed 25 Sensory Organisation Test (SOT) on a NeuroCom SMART Balance Master. Simultaneously, the sessions were recorded using custom software developed for this study (CoM path recorder). Postural sway was calculated from the output of both methods and the level of agreement determined, using Bland-Altman plots. Good agreement was found for eyes open tasks with a firm support, the agreement decreased as the SOT tasks became more challenging. The reasons for this discrepancy may lie in the different approaches that each method takes to calculate CoM. This discrepancy warrants further study with a larger cohort, including fall-prone individuals, cross-referenced with a marker-based system. However, this pilot study lays the foundation for the development of a portable device, which could be used to assess postural control, more cost-effectively than existing equipment

    Explainable AI reveals changes in skin microbiome composition linked to phenotypic differences

    Get PDF
    Alterations in the human microbiome have been observed in a variety of conditions such as asthma, gingivitis, dermatitis and cancer, and much remains to be learned about the links between the microbiome and human health. The fusion of artificial intelligence with rich microbiome datasets can offer an improved understanding of the microbiome’s role in human health. To gain actionable insights it is essential to consider both the predictive power and the transparency of the models by providing explanations for the predictions. We combine the collection of leg skin microbiome samples from two healthy cohorts of women with the application of an explainable artificial intelligence (EAI) approach that provides accurate predictions of phenotypes with explanations. The explanations are expressed in terms of variations in the relative abundance of key microbes that drive the predictions. We predict skin hydration, subject's age, pre/post-menopausal status and smoking status from the leg skin microbiome. The changes in microbial composition linked to skin hydration can accelerate the development of personalized treatments for healthy skin, while those associated with age may offer insights into the skin aging process. The leg microbiome signatures associated with smoking and menopausal status are consistent with previous findings from oral/respiratory tract microbiomes and vaginal/gut microbiomes respectively. This suggests that easily accessible microbiome samples could be used to investigate health-related phenotypes, offering potential for non-invasive diagnosis and condition monitoring. Our EAI approach sets the stage for new work focused on understanding the complex relationships between microbial communities and phenotypes. Our approach can be applied to predict any condition from microbiome samples and has the potential to accelerate the development of microbiome-based personalized therapeutics and non-invasive diagnostics

    Prinzipien der Tumorimmunologie

    No full text
    corecore